Nonlinear regression modeling and detecting change points via the relevance vector machine

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relevance vector machine and multivariate adaptive regression spline for modelling ultimate capacity of pile foundation

This study examines the capability of the Relevance Vector Machine (RVM) and Multivariate Adaptive Regression Spline (MARS) for prediction of ultimate capacity of driven piles and drilled shafts. RVM is a sparse method for training generalized linear models, while MARS technique is basically an adaptive piece-wise regression approach. In this paper, pile capacity prediction models are developed...

متن کامل

An Analysis of Relevance Vector Machine Regression

The relevance vector machine (RVM) is a Bayesian framework for learning sparse regression models and classifiers. Despite of its popularity and practical success, no thorough analysis of its functionality exists. In this paper we consider the RVM in the case of regression models and present two kinds of analysis results: we derive a full characterization of the behavior of the RVM analytically ...

متن کامل

TUNNEL BORING MACHINE PENETRATION RATE PREDICTION BASED ON RELEVANCE VECTOR REGRESSION

key factor in the successful application of a tunnel boring machine (TBM) in tunneling is the ability to develop accurate penetration rate estimates for determining project schedule and costs. Thus establishing a relationship between rock properties and TBM penetration rate can be very helpful in estimation of this vital parameter. However, this parameter cannot be simply predicted since there ...

متن کامل

Detecting Nonlinear Causality via Nonlinear Modeling

We analyze a set of complex time series from the view point of nonlinear causality. The mathematical background for analyzing time series is an extension of embedding theories of autonomous systems to an input{output system. We consider that the existence of nonlinear causality can be detected by nonlinear predictability of input and output sequences. Several numerical examples are given for co...

متن کامل

The Relevance Vector Machine

The support vector machine (SVM) is a state-of-the-art technique for regression and classification, combining excellent generalisation properties with a sparse kernel representation. However, it does suffer from a number of disadvantages, notably the absence of probabilistic outputs, the requirement to estimate a trade-off parameter and the need to utilise 'Mercer' kernel functions. In this pap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Statistics

سال: 2010

ISSN: 0943-4062,1613-9658

DOI: 10.1007/s00180-010-0220-6